
Optimizing the Value of Your Computerized Maintenance Management System (CMMS)

Building Maintenance Optimization Consultants

PRESENTER

Jonathan Thomas, PE, CEM, CRL President jonathant@buildingmoc.com | 770.313.1858

- Facilities asset management programmer since 1998
- Extensive experience in asset inventory, PM programming, FCA, capital planning, FM resource estimation, & benchmarking
- Has served higher education, hospital, & government institutions across the country

PRESENTER



Doug Litwiller, PE, CEM Business Development Manager douglaspl@buildingmoc.com | 515.233.4400

- Facilities management professional since 1981
- Extensive experience in facilities management, fault detection diagnostics (FDD) program management, and energy management
- Has served higher education, healthcare, and investor-owned utilities

OPTIMIZATION = COST \$AVINGS

FOR PEAK FM PERFORMANCE

AGENDA

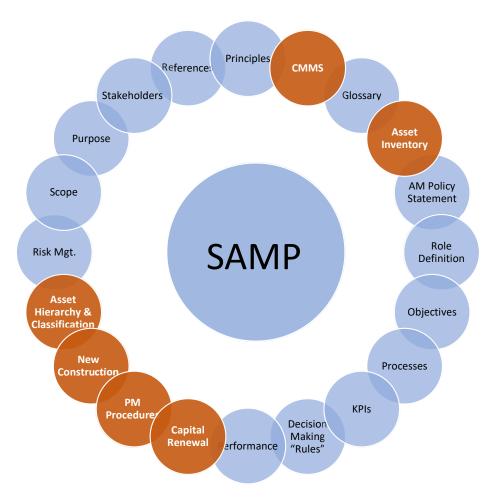
- 1. Asset Management Introduction
- 2. CMMS Introduction
- 3. Asset Management Program
 - i. Establishment
 - ii. Maintenance

4. Summary

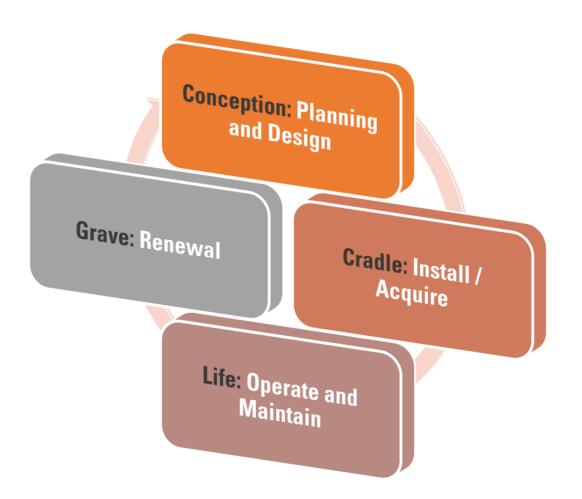
5. Q&A


APPA 1000-1 Total Cost of Ownership for Facilities Asset Management (TCO) – Part 1: Key Principles

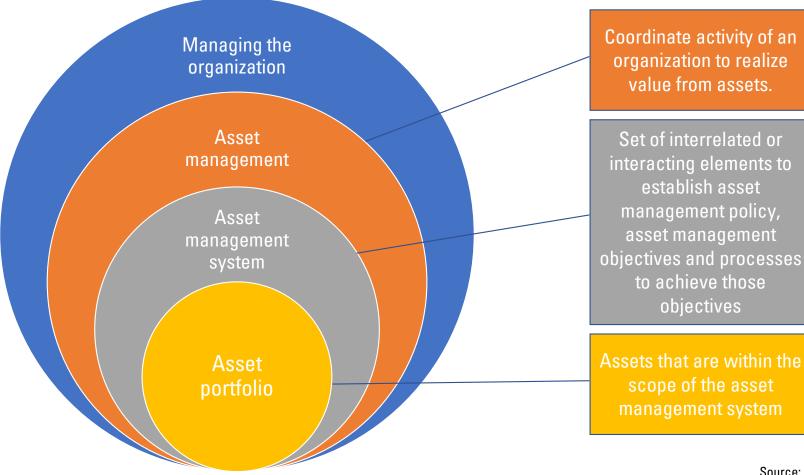
APPA 1000-2 Total Cost of Ownership for Facilities Asset Management (TCO) – Part 2: Implementation and Data Elements



Enables an organization to examine the need for, and performance of, assets and asset systems at different levels. Additionally, it enables the application of analytical approaches towards managing an asset over the different stages of its life cycle (which can start with the conception of the need for the asset, through to its disposal, and includes the managing of any potential post disposal liabilities).



Source: ISO 55000, Section 2.4.1



CMMS & ASSET MANAGEMENT

Source: ISO 55000, Section 2.4.3

CMMS

System Context

CMMS

Computerized Maintenance Management System

- Can be a stand-alone software
- Or it can be a module in the following:

ERP	Enterprise Resource Planning	
EAMS	Enterprise Asset Management System	
IWMS	Integrated Workplace Management System	

CMMS Developer Examples

AiM by AssetWorks
Corrigo
eMaint
FacilityDude by Dude Solutions
FAMIS by Accruent
Maximo by IBM
Oracle
Planon
SAP / Plant Maintenance
Tririga by IBM
ИрКеер
WebTMA by TMA Systems

CMMS

COMMON CMMS FUNCTIONS

- Asset Tracking
- Parts Inventory
- Service Request
- Work Orders (PM & CM)
- Purchase Orders
- Vendors & Customers
- Project Tracking
- Asset database of record

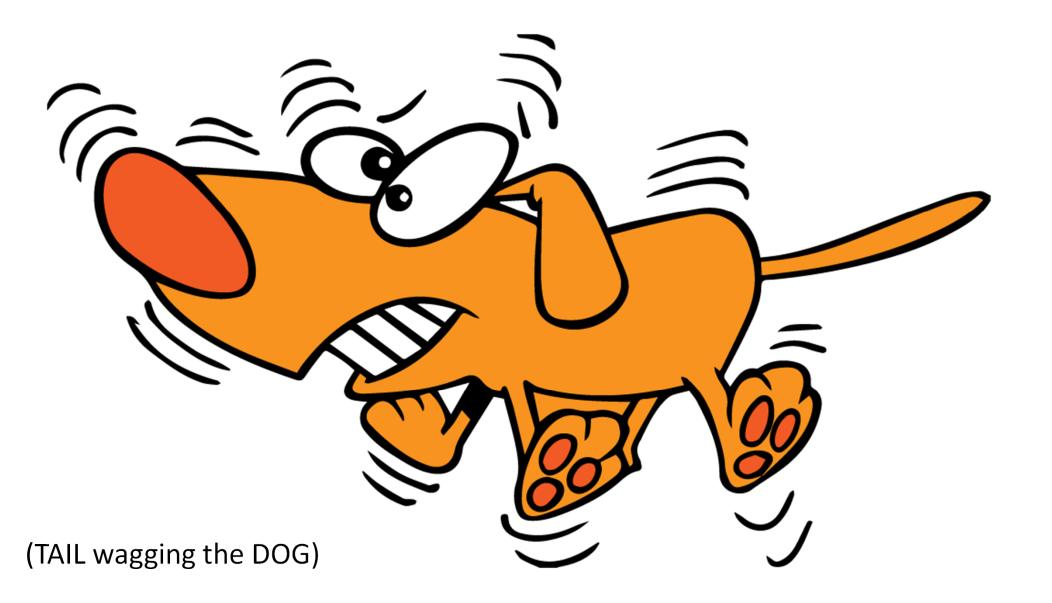
Sound Familiar?

"Our preventive maintenance work order completion rate is acceptable; but I don't know if we're scheduling the right work or if the work is actually getting done." "We plan for 1,400 hours of wrench time per FTE year, but I perceive that I am getting about 600."

"We don't use our parts inventory module... yet."

"Our techs have been working on improving the asset inventory for years."

"We think it would be great to leverage this CMMS feature / workflow, but IT says it can't be done."



46%	Of CMMS features are typically utilized
24.5%	Maintenance worker day spent on productive tasks
20.9%	 Wasted time spent traveling to different places in the facility
19.8%	 Wasted time spent waiting on instructions
10%	 Of organizations are not utilizing their CMMS for its designed purpose
70%	Of CMMS installations FAIL

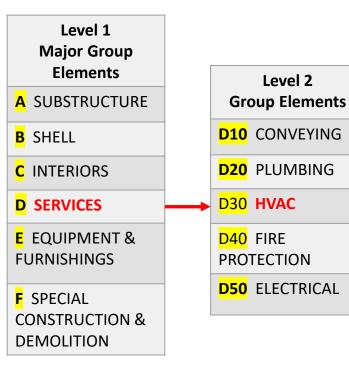
- Distrust in reporting at the management level
- Little confidence in effectiveness of technical staff
- General distrust and disinterest in CMMS
- Data without strategic direction
- Stalled out and incomplete asset inventory
- Adversarial relationship between operations and IT
- Over-reliance on CMMS vendor for guidance on content

Solutions

- ✓ Don't take CMMS content for granted
- ✓ Realize your Asset Management Program
- Optimize your CMMS prior to implementing or deciding to change applications
- Convert your CMMS deficiencies into added value

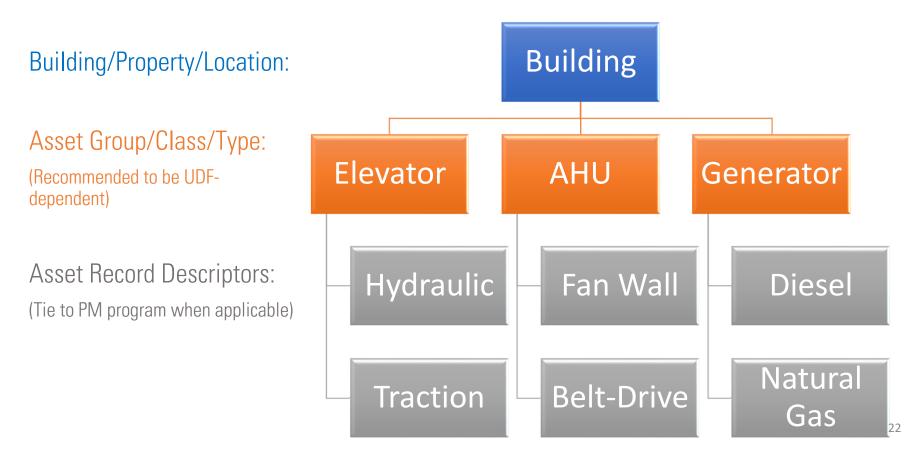
Establishment

- 1. Data Schema
- 2. Asset Data Collection
- 3. Preventive Maintenance Programming



Data Schema

Taxonomy 1.



Level 3	Level 4
Individual Elements (HVAC)	Sub-Elements (Terminal & Package
D3010 ENERGY SUPPLY	Units)
D3020 HEAT GENERATING SYSTEMS	D3041 AIR DISTRIBUTION SYSTEMS
<mark>D3030</mark> COOLING GENERATING	D3042 EXHAUST VENTILATION
SYSTEMS	SYSTEMS
D3040 DISTRIBUTION SYSTEMS	D3043 STEAM DISTRIBUTION SYSTEMS
D3050 TERMINAL & PACKAGE UNITS	D3044 HOT WATER DISTRIBUTION
D3060 CONTROLS &	D3045 CHIILLED WATER
INSTRUMENTATION	DISTRIBUTION
<mark>D3070</mark> SYSTEMS TESTING &	D3046 CHANGE-OVER
BALANCING	DISTRIBUTION SYSTEM
<mark>D3090</mark> OTHER HVAC SYSTEMS &	D3047 GLYCOL DISTRIBUTION
EQUIPMENT	SYSTEMS 21

2. Hierarchy

Asset Data Schema:

- 3. User-Defined Fields (UDF)*
 - Basic Fields: Make, Model, Serial, Location
 - Extended Field for Operational Support:
 - Capacity (MBH, CFM, HP, Tons)
 - Power supply (Voltage, Phase, Amps)
 - Motor data (M/M/S, HP, Voltage)
 - Consumable Parts
 - Advanced Fields for Renewal:
 - Date Basis
 - Expected Useful Life
 - Renewal Cost
 - Only include data that can be captured across your entire portfolio

*Some CMMS applications may have programmed fields for certain data; learn what these are and use them accordingly.

Asset Inventory & Data Collection:

- Not easy or fast
- Analyze available construction and form a plan prior to working
- Data is portable now; use systematic photography as your data collection method
- Enter data from an office using trained but low-opportunity cost staff
- Load all collected data in the right place in your CMMS
- Assets should be physically labeled when applicable.

Barcode / QR Code Labeling

- Needed for location in field even if CMMS is GIS-based
- Recommend simple serialized Asset Identification
 - fixed digits
 - next number up
- Recommend conversion to simple serialized from "smart" numbering
 - Concatenation of building number, asset type, and sequence
 - Example: B001-BLR-003
- Avoid using self-printing systems
- Use a durable label and avoid label maintenance

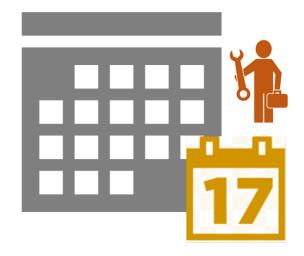
Preventive Maintenance Procedures:

Includes the following maintenance activities:

Routine

Preventive

Predictive


Compliance

PM Benefits:

Ensure uptime Improve customer service Efficiently plan & schedule staff Preserve energy efficiency Extend asset life cycles Reduce costly unplanned maintenance

Procedures should be characterized by:

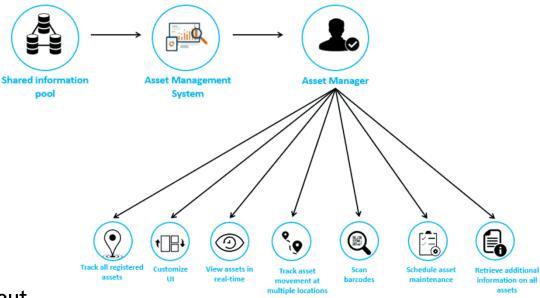
Technical accuracy Scalability across your portfolio

Maintenance

- 1. Work Order Closeout
- 2. Staff Engagement
- 3. Asset Management Staffing
- 4. New Construction Asset Investiture

1. Work Order Closeout:

ALL work orders closed out with:


Internal labor Contractor labor Parts & materials Asset affected (lowest level of hierarchy)

Corrective work order notes:

As-found condition Problem / Remedy Retroactive asset appendage

Use your mobile applications for WO closeout


Train your staff on utilization of software Train your staff on using tablets in the field

2. Staff Engagement:

- Make the CMMS a conduit to O&M Manuals and Construction Diagrams
- Prioritize thorough maintenance histories
- Support accurate asset location through good information and photos
- Allow for participation in reliabilitycentered maintenance strategies after data has been accumulated

Ongoing asset database improvements & adjustments

KPIs should be established for work order closeout compliance.

Establish work order quality assurance treatments.

Incentivize staff to closeout work orders per requirements.

4. New Construction Asset Investiture:

- Understanding of asset data schema in advance
- Strategic consulting
- Preparation of CMMS for new data
- First-hand data collection
- Data loaded into CMMS in context with the rest of the campus
- Collection of consumable parts information
- Photos loaded into CMMS
- Capital planning projections included
- PM program developed and loaded into CMMS
- Completed in advance of building turnover

Lock out/tag out procedures

Planning, scheduling and shutdown considerations

Warranty management

Reliability-centered maintenance processes

Condition-based maintenance work management (IIOT & FDD)

Asset failure mode selections

Disaster recovery modes of operation

Make informed repair / replace decisions

Q+A & next steps

Real content. Real planning. Real Results.

Building Maintenance Optimization Consultants Inc. 2321 Fourth Street • Suite 203 • Tucker, GA 30084 (770) 313.1858

buildingmoc.com

ADDITIONAL RESOURCES

Reliabilityweb.com	https://reliabilityweb.com/
Association of Asset Management Professionals	https://www.maintenance.org/
Institute of Asset Management	https://theiam.org/
Life Cycle Engineering	https://www.lce.com/
Reliable Plant	https://www.reliableplant.com/
ReliabilityX	https://reliabilityx.com/contact/
ASTM Uniformat II	https://www.uniformat.com/index.php/unifrmt-ii/past-site- articles/99-background-on-uniformat-ii-the-astm-e1557- building-standard
CMMS Platform List	https://www.capterra.com/cmms-software/
APPA Total Cost of Ownership Standard	https://www.appa.org/appa-total-cost-of-ownership-tco-part- 1-key-principles/
ISO 55000 Standards	https://webstore.ansi.org/Standards/ISO/ISO550002014?gclid =Cj0KCQiA_rfvBRCPARIsANIV66N9jYx1- NnmJthBx5Q_3cagI2JNPG9bpH3t9WujAGUTf0aJIDiLUTgaAubS EALw_wcB
University of Tennessee Reliability and Maintainability Center	https://rmc.utk.edu/

ADDITIONAL RESOURCES

CONTACT

Jonathan Thomas, PE, CEM, CRL President jonathant@buildingmoc.com | 770.313.1858

Doug Litwiller, PE, CEM Business Development Manager douglaspl@buildingmoc.com | 515.233.4400